首页 | 本学科首页   官方微博 | 高级检索  
     


Direct electrochemistry and enhanced electrocatalytic activity of hemoglobin entrapped in graphene and ZnO nanosphere composite film
Authors:Jing Xu  Changhua Liu  Zongfang Wu
Affiliation:1. Chongqing Key Laboratory of Analytical Chemistry, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400700, People’s Republic of China
Abstract:A biocomposite film for sensing hydrogen peroxide (HP) is described that is based on nanospheres made from hemoglobin (Hb), graphene, and zinc oxide. The composition, morphology and size of the film were studied by transmission electron microscopy. UV-vis spectroscopy revealed that the Hb entrapped in the graphene and ZnO nanosphere retains its native structure. A pair of stable and well-defined quasi-reversible redox peaks of Hb was obtained, with a formal potential of ?30 mV at pH 6.5. Hb exhibits excellent long-term bioelectrocatalytic activity towards HP. The apparent heterogeneous electron transfer rate constant is 1.0 s?1, indicating that the presence of graphene in the composite film facilitates the electron transfer between matrix and the electroactive center of Hb. The sensor responds linearly to HP in the range from 1.8 μM to 2.3 mM, with a detection limit of 0.6 μM (at S/N?=?3). The apparent Michaelis-Menten constant is 1.46 mM. The biosensor displays high sensitivity, good reproducibility, and long-term stability.
Figure
TEM images of graphene insert: graphene-ZnO nanosphere
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号