首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Fatigue failure mechanism of polycrystalline materials at the mesoscopic level
Authors:T F Elsukova  V E Panin
Abstract:Systematic studies of the mesoscopic mechanisms of deformation of polycrystalline materials of lead and its alloys have been carried out under conditions of sign-alternating bending at room temperature. It has been shown that fatigue failure is due to the evolution of vortices of mesoscopic substructures. Multiple slip separated in adjacent grains is the basis for this kind of deformation. This causes extremely strong localization of the displacement in individual favorably oriented grains and self-organization of these grains in agreement with regular structural levels of deformation. In polycrystalline lead, the mesoscopic substructure has a block character, with each block containing several grains. The elements of such substructures are nucleated in stress mesoconcentrator zones which arise at the grain boundaries under conditions of intense grain boundary slippage. In the course of cycling they gradually propagate through the whole transverse cross section of the sample, which completes its failure. Alloying substantially changes the character of the mesoscopic substructures which are formed. We have considered the different types of vortex mesoscopic substructures and studied their connection with cyclical endurance of the alloy. Recommendations for increasing the fatigue endurance of plastic polycrystalline materials are given. Institute of the Physics of hardening and Materials Science, Siberian Section, Russian Academy of Sciences. V. D. Kuznetsov Siberian Physicotechnical Institute at Tomsk University. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 6, pp. 40–57, June, 1996.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号