首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Two-Dimensional Riemann Problems for the Compressible Euler System
Authors:Yuxi ZHENG
Institution:Department of Mathematics, The Pennsylvania State University, University Park, PA 16802, USA
Abstract:Riemann problems for the compressible Euler system in two space dimensions are complicated and difficult, but a viable alternative remains missing. The author lists merits of one-dimensional Riemann problems and compares them with those for the current two-dimensional Riemann problems, to illustrate their worthiness. Two-dimensional Riemann problems are approached via the methodology promoted by Andy Majda in the spirits of modern applied mathematics; that is, simplified model is built via asymptotic analysis, numerical simulation and theoretical analysis. A simplified model called the pressure gradient system is derived from the full Euler system via an asymptotic process. State-of-the-art numerical methods in numerical simulations are used to discern smallscale structures of the solutions, e.g., semi-hyperbolic patches. Analytical methods are used to establish the validity of the structure revealed in the numerical simulation. The entire process, used in many of Majda’s programs, is shown here for the two-dimensional Riemann problems for the compressible Euler systems of conservation laws.
Keywords:Characteristic decomposition  Guderley reflection  Hodograph transform  Pressure gradient system  Self-similar  Semi-hyperbolic wave  Triple point paradox  Riemann problem  Riemann variable
本文献已被 维普 万方数据 SpringerLink 等数据库收录!
点击此处可从《数学年刊B辑(英文版)》浏览原始摘要信息
点击此处可从《数学年刊B辑(英文版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号