首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Preparative Hydrophobic Interaction Chromatography of Proteins Using Ether Based Chemically Bonded Phases
Abstract:Abstract

This paper examines the use of 15–20 micron wide-pore silica-based ether bonded phases for the preparative hydrophobic interaction chromatography of proteins. In particular, silyl ethers are immobilized on large particle silica in an analogous manner to previously developed ether bonded 5 um analytical supports. The preparative supports are reproducibly prepared and exhibit constant chromatographic retention for at least five months of continual use. Preparative columns can be operated for protein chromatography with peak shapes and capacity as predicted by the Snyder gradient elution model. Moreover, similar retention times are obtained relative to those on the 5 um analytical columns, enabling the direct transition and scale-up of separation. Gradient optimization is seen to directly parallel that performed on 5 um bonded ether analytical columns. Acceptable chromatographic resolution was obtained with sample capacity of >15 mg protein/ml column volume using a repetitive injection technique. A column clean-up strategy is examined for rapid and safe removal of contaminants. An illustrative example of use of the bonded ether preparative columns is made by application to soybean trypsin inhibitor purification. Initial results are presented on a column-switching method for the analytical monitoring of preparative separation.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号