首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Possible effects on the polyethene chain structure of trimethylaluminum coordination to zirconocene catalysts
Authors:Jianke Liu  Jon Andreas Stvneng  Erling Rytter
Institution:Jianke Liu,Jon Andreas Støvneng,Erling Rytter
Abstract:Ethene was polymerized with the catalytic systems L2ZrCl2/MAO/TMA (where L = Cp, Me5Cp, or Me4Cp; Cp = η5‐cyclopentadienyl; MAO = methylaluminoxane; and TMA = trimethylaluminum) at 60 °C, 2 bar, and AlTMA/Zr ratios of 0–2700. The polymerization activity was reduced with the addition of TMA for L = Cp but was almost unaffected for the methyl‐substituted catalysts. Increasing the TMA concentration resulted in a lower molecular weight of the polymer, with the largest effect for L = Me5Cp. A gel permeation chromatography analysis of the polymers revealed a high molecular weight shoulder and a nearly bimodal distribution for L = Me5Cp at high TMA concentrations. A possible explanation of such a shoulder in terms of long‐chain branching was ruled out by dynamic viscosity measurements. The origin of this effect more likely stemmed from competition between chain transfer to aluminum and β‐hydrogen transfer reactions at two different sites, one TMA‐sensitive and one TMA‐insensitive. Polymerizations at various pressures and temperatures substantiated this assumption. A clue to the underlying mechanism came from investigations of chain transfer to TMA studied with density functional calculations. Complexation of Me3Al to Zr was much stronger for L = Cp than for L = Me5Cp. However, the overall chain‐transfer barrier was much higher for L = Cp. These results agreed both with the reduced activity for L = Cp and with the strongly reduced molecular weight for L = Me5Cp observed with the addition of TMA. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3566–3577, 2001
Keywords:zirconocene catalysts  trimethylaluminum  chain transfer  ethene polymerization  density functional theory
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号