首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Analysis of the transferability of atomic multipoles for amino acids in modeling macromolecular charge distribution from fragments
Authors:Pawel K&#x;dzierski  W Andrzej Sokalski
Institution:Pawel K?dzierski,W. Andrzej Sokalski
Abstract:Cumulative Atomic Multipole Moments were calculated for all natural amino acids and symmetric cyclic hexapeptides within Self‐Consisted Field (SCF) and Density Functional Theory (DFT) approaches using a standard 6‐31G(d,p) basis set. These data were used to analyze in detail the quality and the conformational and the intermolecular transferability of molecular charge distributions expressed in the atomic multipole form. Intermolecular interaction energies were reproduced reasonably by CAMM transformed from other conformations. Good transferability of CAMM based model was also achieved between similar molecular environments, which opens a route to modeling electrostatic effects in highly symmetric (e.g., crystalline) systems. Transferability deficiencies of various charge distribution models were analyzed and attributed to different levels of multipole expansion. © 2001 John Wiley & Sons, Inc. J Comput Chem 22: 1082–1097, 2001
Keywords:atomic multipoles  amino acids  transferability  charge distribution  molecular electrostatic potential
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号