首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Investigation of the use of density functionals in second‐ and third‐row transition metal dimer calculations
Authors:Susumu Yanagisawa  Takao Tsuneda  Kimihiko Hirao
Abstract:We explore the use of density functionals in calculating the equilibrium distances, dissociation energies, and harmonic vibrational frequencies of the homonuclear diatomics of the second‐row transition metals, platinum, and gold. The outermost sd interconfigurational energies (ICEs) and the outermost s and d ionization potentials (IPs) were also calculated for the second‐ and third‐row transition metal atoms. Compared with the first‐row transition metal dimer calculations (J Chem Phys 2000, 112, 545–553), the binding energies calculated using the combination of the Becke 1988 exchange and the one‐parameter progressive correlation (BOP) functional and Becke's three‐parameter hybrid (B3LYP) functional are in better agreement with the experiment. However, the pure BOP functional still gives the deep and narrow dissociation potential wells for the electron configurations containing high‐angular‐momentum open‐shell orbitals. Analysis of the sd ICEs and the s and d IPs suggests that the overestimation may be due to the insufficient long‐range interaction between the outermost s and d orbitals in the exchange functional. The hybrid B3LYP functional seems to partly solve this problem for many systems by the incorporation of the Hartree–Fock exchange integral. However, this still leads to an erroneous energy gap between the configurations of fairly different spin multiplicity, probably because of the unbalance of exchange and correlation contributions. © 2001 John Wiley & Sons, Inc. J Comput Chem 22: 1995–2009, 2001
Keywords:second‐ and third‐row transition metal dimer  BOP functional  dissociation potential well  outermost s and d orbitals  long‐range exchange interaction
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号