首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Resistive switching mechanism of Ag/ZrO2:Cu/Pt memory cell
Authors:Shibing Long  Qi Liu  Hangbing Lv  Yingtao Li  Yan Wang  Sen Zhang  Wentai Lian  Kangwei Zhang  Ming Wang  Hongwei Xie  Ming Liu
Institution:1. Laboratory of Nano-Fabrication and Novel Devices Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, China
Abstract:Resistive switching mechanism of zirconium oxide-based resistive random access memory (RRAM) devices composed of Cu-doped ZrO2 film sandwiched between an oxidizable electrode and an inert electrode was investigated. The Ag/ZrO2:Cu/Pt RRAM devices with crosspoint structure fabricated by e-beam evaporation and e-beam lithography show reproducible bipolar resistive switching. The linear I?CV relationship of low resistance state (LRS) and the dependence of LRS resistance (R ON) and reset current (I reset) on the set current compliance (I comp) indicate that the observed resistive switching characteristics of the Ag/ZrO2:Cu/Pt device should be ascribed to the formation and annihilation of localized conductive filaments (CFs). The physical origin of CF was further analyzed by transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS). CFs were directly observed by cross-sectional TEM. According to EDS and elemental mapping analysis, the main chemical composition of CF is determined by Ag atoms, coming from the Ag top electrode. On the basis of these experiments, we propose that the set and reset process of the device stem from the electrochemical reactions in the zirconium oxide under different external electrical stimuli.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号