首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Development of a capillary electrophoresis method for the assay of ramipril and its impurities: an issue of cis-trans isomerization
Authors:Orlandini Serena  Gotti Roberto  Giannini Iacopo  Pasquini Benedetta  Furlanetto Sandra
Institution:Department of Pharmaceutical Sciences, University of Florence, Florence, Italy. serena.orlandini@unifi.it
Abstract:The development of a rapid and selective capillary electrophoresis method for the quantitation of ramipril and its eight main impurities in pharmaceutical dosage form is described. Ramipril and three of its impurities contain a proline-similar moiety which causes in solution the presence of interconverting cis-trans isomers with respect to the amide bond. The interplay between electrophoretic migration and isomerization may yield the presence of an undesired interconversion zone between the two isomer peaks in the electropherogram, depending on the experimental conditions. Different capillary electrophoresis operative modes and pseudostationary phases were evaluated, both in normal and reverse polarity, in order to find the essential analytical parameters which could make it possible to overcome this issue and thus accurately quantify the analytes. The best results were obtained by using microemulsion electrokinetic chromatography in reverse polarity, where all the compounds which undergo cis-trans interconversion migrate as a single narrow peak. Experimental design led to identification of the following optimised conditions: background electrolyte, microemulsion made by 88.95% of 90 mM phosphate pH 2.5, 1.05% of n-heptane and 10.00% of SDS/n-butanol in 1:2 ratio; voltage, -26 kV; temperature, 17°C. Applying these conditions, the baseline separation of the analytes was obtained in about 10 min. Validation of the method following ICH guidelines was carried out and the procedure was applied to a real sample of ramipril tablets.
Keywords:Capillary electrophoresis  Cis–trans isomerization  Experimental design  Impurities  Ramipril
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号