首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Nonspherical ZnS colloidal building blocks for three-dimensional photonic crystals
Authors:Liddell C M  Summers C J
Institution:School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA. cliddel@ccmr.cornell.edu
Abstract:The asymmetry introduced by a complex or nonspherical basis promotes photonic band gap formation in three-dimensional photonic crystals. However, relatively few techniques have been demonstrated to produce uniform nonspherical colloids for use as photonic crystal bases. Here we expand the menu of basis types with high refractive index by preparing nonspherical zinc sulfide colloids of uniform size and shape. Dimers, trimers, and planar tetramers were precipitated from aqueous solution by the thermal decomposition of thioacetamide in the presence of zinc nitrate, manganese nitrate, and nitric acid. The well-defined morphological types were obtained from suspensions aged for 4-6 h at 26-32 degrees C and then for 20-35 min at 85 degrees C. Stereological techniques were used to analyze SEM images and determine the percentage of each particle class. For example, the quantitative characterization of a particle population prepared at 29 degrees C for 6 h and 85 degrees C for 22 min had the composition 59+/-3% spheres, 31+/-2% dimers, 7+/-1% trimers, 0.4+/-0.2% tetramers, and 2.5+/-0.8% complex clusters (encompasses all other varieties of shape). X-ray diffraction and X-ray photoelectron spectroscopy confirmed the zinc blend crystal structure and the stoichiometric composition of the particles. The refractive index was estimated as 2.25 (413 nm) -2.09 (709 nm) by fitting experimental absorption spectra to curves derived from Mie scattering calculations. This indicated an average porosity approximately 24%. Such colloids offer the potential to form diamond-like lattices with large, stable photonic band gaps.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号