首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A performance analysis of echographic ultrasonic techniques for non-invasive temperature estimation in hyperthermia range using phantoms with scatterers
Authors:I Bazán  M Vazquez  A Vera
Institution:a Electrical Engineering Department (CINVESTAV-IPN), México DF, Mexico
b Research Institute on Applied Mathematic and Systems (UNAM), México DF, Mexico
c Department of Ultrasonic Signals, Systems and Technologies, Acoustic Institute (CSIC), Madrid, Spain
Abstract:Optimization of efficiency in hyperthermia requires a precise and non-invasive estimation of internal distribution of temperature. Although there are several research trends for ultrasonic temperature estimation, efficient equipments for its use in the clinical practice are not still available. The main objective of this work was to research about the limitations and potential improvements of previously reported signal processing options in order to identify research efforts to facilitate their future clinical use as a thermal estimator.In this document, we have a critical analysis of potential performance of previous ultrasonic research trends for temperature estimation inside materials, using different processing techniques proposed in frequency, time and phase domains. It was carried out in phantom with scatterers, assessing at their specific applicability, linearity and limitations in hyperthermia range. Three complementary evaluation indexes: technique robustness, Mat-lab processing time and temperature resolution, with specific application protocols, were defined and employed for a comparative quantification of the behavior of the techniques. The average increment per °C and mm was identified for each technique (3 KHz/°C in the frequency analysis, 0.02 rad/°C in the phase domain, while increments in the time domain of only 1.6 ns/°C were found). Their linearity with temperature rising was measured using linear and quadratic regressions and they were correlated with the obtained data.New improvements in time and frequency signal processing in order to reveal the potential thermal and spatial resolutions of these techniques are proposed and their subsequent improved estimation results are shown for simulated and measured A-scans registers. As an example of these processing novelties, an excellent potential resolution of 0.12 °C into hyperthermia range, with near-to-linear frequency dependence, could be achieved.Specifically defined “numerical” and physical multi-scatter phantoms are described, which mimic ultrasound velocity in tissues of about 1560 m/s @ 35 °C and have a quasi-uniform internal scattering structure designed to assure standard signal patterns adequate for processing comparisons in the same time and sound velocity conditions for all the techniques analyzed, and to obtain easily repeatable multi-pulse echo-patterns.A perfect lineal dependence (100% of correlation coefficient) between the unitary average increment measured by each technique and temperature rising was observed while working with simulated A-scan registers, where all the parameters are under an accurate control. Nevertheless a very small quadratic tendency appeared in the results obtained from experimental echo registers, which are more similar to a real tissues case. It would be an interesting future work to analyze the behavior of these techniques in real tissues in order to confirm or reject this light quadratic tendency.Finally, new methods were detailed and applied in order to precisely quantify the advantages of each estimation technique; their respective intrinsic limitations were also underlined.
Keywords:43  80  +p  07  20  D
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号