首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Electronic Modulation of Palladium in Metal Phosphide Nanoparticles for Chemoselective Reduction of Halogenated Nitrobenzenes
Authors:Ming Zhao  Baoming Feng  Xiaofei Qiao  Ning Zhong  Xuemei Ge  Yuan Ji
Abstract:Tuning the electronic property of a transition metal plays an important role in the selective catalysis. Herein, the control synthesis of (PdxNiy)‐P nanoparticles is reported. The binding energy of Pd3d5/2 as a function of x/y ratio is well tunable from 335.3 to 335.9 eV. The composition‐induced electronic modulation was correlated with the selective catalysis of (PdxNiy)‐P in the reduction of halogenated nitrobenzenes. The electro‐deficiency of Pd helped to improve the selectivity. The amorphous (Pd38Ni26)P36/C performed an exceptional selectivity in comparison with other related (Pd‐Ni)‐P/C, Pd38Ni26/C, and Pd/C. Various halogenated nitrobenzenes (chlorides, bromides, and iodide) were tolerant and the corresponding halogenated anilines were obtained in high yields. This work provides some clues for the rational design of bimetallic phosphides with covalent interactions to boost the catalysis.
Keywords:chemoselectivity  heterogeneous catalyst  metal phosphide  palladium  para-chloronitrobenzene
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号