Abstract: | We study the maximum mean discrepancy (MMD) in the context of critical transitions modelled by fast‐slow stochastic dynamical systems. We establish a new link between the dynamical theory of critical transitions with the statistical aspects of the MMD. In particular, we show that a formal approximation of the MMD near fast subsystem bifurcation points can be computed to leading order. This leading order approximation shows that the MMD depends intricately on the fast‐slow systems parameters, which can influence the detection of potential early‐warning signs before critical transitions. However, the MMD turns out to be an excellent binary classifier to detect the change‐point location induced by the critical transition. We cross‐validate our results by numerical simulations for a van der Pol‐type model. |