首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Epoxide‐derived mixed‐mode chromatographic stationary phases for separation of active substances in fixed‐dose combination drugs
Authors:Shuanghong Zhang  Qian‐Hong Wan  Yan Li
Abstract:A method for the preparation of novel mixed‐mode reversed‐phase/strong cation exchange stationary phase for the separation of fixed‐dose combination drugs has been developed. An epoxysilane bonded silica prepared by vapor phase deposition was used as a starting material to produce diol, octadecyl, sulfonate, and mixed octadecyl/sulfonate groups bonded silica phases. The chemical structure and surface coverage of the functional groups on these synthesized phases were confirmed by fourier‐transform infrared and solid‐state 13C NMR spectroscopy and elemental analysis. Alkylbenzene homologs, basic drugs, nucleobases and alkylaniline homologs were used as probes to demonstrate the reversed‐phase, ion exchange, hydrophilic interaction and mixed‐mode retention behaviors of these stationary phases. The octadecyl/sulfonate bonded silica exhibits pronounced mixed‐mode retention behavior and superior retentivity and selectivity for alkylaniline homologs. The mixed‐mode retention is affected by either ionic or solvent strength in the mobile phase, permiting optimization of a separation by fine tuning these parameters. The mixed‐mode stationary phase was applied to separate two fixed‐dose combination drugs: compound reserpine tablets and compound methoxyphenamine capsules. The results show that simultaneous separation of multiple substances in the compound dosage can be achieved on the mixed‐mode phase, which makes multi‐cycles of analysis for multiple components obsolete.
Keywords:basic compounds  fixed‐dose combinations  mixed‐mode chromatography  retention mechanisms  stationary phases
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号