首页 | 本学科首页   官方微博 | 高级检索  
     


Luminescence-laser classification of heteroaromatic and aromatic compounds.
Authors:N Nijegorodov  R Mabbs
Affiliation:Physics Department, University of Botswana, Gaborone. nijegoni@mopipi.ub.bw
Abstract:The luminescent and laser properties of heteroaromatic and aromatic compounds are reviewed and discussed on the basis of all possible mutual arrangements of singlet and triplet states. All heteroaromatic compounds are divided into five classes. It is shown that a heteroaromatic compound can only be an effective laser dye if it belongs to class V (a situation where the Tnpi* level lies at higher energy than the S1(pipi*) level). Moreover, it is shown that the energy interval between the Tnpi* and S1(pipi*) states must be no less than 1000 cm - since the rate constant of the non-radiative process S1(pipi*)[symbol in text]Tnpi*[symbol in text]T1(pipi*) is usually 100 times greater than the fluorescence rate constant. The classification is extended to compounds with orbitals of pi/,pi*, pi,nupi* and pi/,nupi* nature. Pure aromatic compounds, the spectral-luminescent properties of which are solely determined by transitions of pi-electrons (pi --> pi*), are also divided into five classes, depending on the mutual arrangement of the Sp(1La), Salpha(1Lb), Tp(3La) and Tbeta(3Bb) states. It is found that only aromatic compounds of classes IV and V can be effective scintillators and laser dyes. It is also shown that the energy interval Salpha-Sp (for class IV) and Tbeta-Sp (for class V) must be no less than 1000 cm(-1). To illustrate the classifications for heteroaromatic and aromatic compounds, 12 specifically chosen compounds were studied experimentally and quantum chemically. The quantum yields, gamma and decay times, tauf of fluorescence in aerated and non-deaerated ethanol or cyclohexane solutions were measured. The oscillator strength, f(e), fluorescence rate constant, k(f), natural lifetimes, tauT(0) and intersystem crossing rate constants, kST are calculated. The laser ability of each of the compounds studied is tested. The suggested classification schemes can be extremely useful in the quest for effective scintillators and laser dyes among hypothetical heteroaromatic and aromatic molecules, enabling evaluation of these properties for a particular compound using only quantum chemical simulations.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号