首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Design of Multiple Metal Doped Ni Based Catalyst for Hydrogen Generation from Bio-oil Reforming at Mild-temperature
Authors:Li-xia Yuan  Fang Ding  Jian-ming Yao  Xiang-song Chen  Wei-wei Liu  Jin-yong Wu  Fei-yan Gong  Quan-xin Li
Institution:1.Institute of Plasma Physics, Chinese Academy Sciences, Hefei 230026, China;Anhui Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, Hefei 230026, China2.Institute of Plasma Physics, Chinese Academy Sciences, Hefei 230026, China3.Anhui Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, Hefei 230026, China
Abstract:A new kind of multiple metal (Cu, Mg, Ce) doped Ni based mixed oxide catalyst, synthesized by the co-precipitation method, was used for efficient production of hydrogen from bio-oil reforming at 250-500 oC. Two reforming processes, the conventional steam reforming (CSR) and the electrochemical catalytic reforming (ECR), were performed for the bio-oil reforming. The catalyst with an atomic mole ratio of Ni:Cu:Mg:Ce:Al=5.6:1.1:1.9:1.0:9.9 exhibited very high reforming activity both in CSR and ECR processes, reaching 82.8% hydrogen yield at 500 oC in the CSR, yield of 91.1% at 400 oC and 3.1 A in the ECR, respectively. The influences of reforming temperature and the current through the catalyst in the ECR were investigated. It was observed that the reforming and decomposition of the bio-oil were significantly enhanced by the current. The promoting effects of current on the decomposition and reforming processes of bio-oil were further studied by using the model compounds of bio-oil (acetic acid and ethanol) under 101 kPa or low pressure (0.1 Pa) through the time of flight analysis. The catalyst also shows high water gas shift activity in the range of 300-600 oC. The catalyst features and alterations in the bio-oil reforming were characterized by the ICP, XRD, XPS and BET measurements. The mechanism of bio-oil reforming was discussed based on the study of the elemental reactions and catalyst characterizations. The research catalyst, potentially, may be a practical catalyst for high efficient production of hydrogen from reforming of bio-oil at mild-temperature.
Keywords:Hydrogen generation  Bio-oil  Ni based catalyst  Mild-temperature
点击此处可从《化学物理学报(中文版)》浏览原始摘要信息
点击此处可从《化学物理学报(中文版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号