Abstract: | Raman spectroscopy both at 298 and 77 K complemented with infrared spectroscopy was used to study the structure of dawsonite. Previous crystallographic studies concluded that the structure of dawsonite was a simple one; however, both Raman and infrared spectroscopy show that this conclusion is incorrect. Multiple bands are observed in both the Raman and infrared spectra in the antisymmetric stretching and bending regions, showing that the symmetry of the carbonate anion is reduced and in all probability the carbonate anions are not equivalent in the dawsonite structure. Multiple OH deformation vibrations centred around 950 cm−1 in both Raman and infrared spectra show that the OH units in the dawsonite structure are non‐equivalent. Calculations using the position of the Raman and infrared OH stretching vibrations enabled estimates of the hydrogen‐bond distances of 0.2735 and 0.27219 pm at 298 K, and 0.27315 and 0.2713 pm at 77 K to be made. This indicates strong hydrogen bonding of the OH units in the dawsonite structure. Copyright © 2007 John Wiley & Sons, Ltd. |