首页 | 本学科首页   官方微博 | 高级检索  
     


Complex Macromolecular Architectures by Reversible Addition Fragmentation Chain Transfer Chemistry: Theory and Practice
Authors:Leonie Barner  Thomas P. Davis  Martina H. Stenzel  Christopher Barner‐Kowollik
Abstract:Reversible addition–fragmentation chain transfer (RAFT) chemistry can be effectively employed to construct macromolecular architectures of varying topologies. The present article explores the principle design routes to star, block, and comb polymers in the context of theoretical design criteria for the so‐called Z‐ and R‐group approaches. The specific advantages and disadvantages of each approach are underpinned by selected examples generated in the CAMD laboratories. In particular, we demonstrate how the modeling of full molecular weight distributions can be employed to guide the synthetic effort. We further explore the theory and practice of generating amphiphilic block copolymer structures and their self‐assembly. In addition, the article foreshadows how modern synthetic techniques that combine RAFT chemistry with highly orthogonal click chemistry can be employed as a powerful tool that furthers the enhancement of macromolecular design possibilities to generate block (star) copolymers of monomers with extremely disparate reactivities. Finally, the ability of RAFT chemistry to modify the surface of well‐defined nano‐ and microspheres as devices in biomedical application is detailed.
image

Keywords:block copolymers  comb polymers  complex macromolecular architectures  grafting from microspheres  living free radical polymerization  mechanism and kinetics  reversible addition–  fragmentation chain transfer (RAFT)  star polymers
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号