Abstract: | The H2Ge=Ge:, as well as and its derivatives (X2Ge=Ge:, X=H, Me, F, Cl, Br, Ph, Ar, : : :) is a kind of new species. Its cycloaddition reactions is a new area for the study of germy-lene chemistry. The mechanism of the cycloaddition reaction between singlet Me2Ge=Ge: and acetaldehyde was investigated with the B3LYP/6-31G* method in this work. From the potential energy profile, it could be predicted that the reaction has one dominant re-action pathway. The reaction rule is that the two reactants firstly form a four-membered Ge-heterocyclic ring germylene through the [2+2] cycloaddition reaction. Because of the 4p unoccupied orbital of Ge: atom in the four-membered Ge-heterocyclic ring germylene and the π orbital of acetaldehyde forming a π→p donor-acceptor bond, the four-membered Ge-heterocyclic ring germylene further combines with acetaldehyde to form an intermedi-ate. Because the Ge atom in intermediate happens sp3 hybridization after transition state, then, intermediate isomerizes to a spiro-Ge-heterocyclic ring compound via a transition state. The research result indicates the laws of cycloaddition reaction between Me2Ge=Ge: and ac-etaldehyde, and lays the theory foundation of the cycloaddition reaction between H2Ge=Ge: and its derivatives (X2Ge=Ge:, X=H, Me, F, Cl, Br, Ph, Ar, : : :) and asymmetric π-bonded compounds, which are significant for the synthesis of small-ring and spiro-Ge-heterocyclic ring compounds. |