首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Determination of the radiative lifetimes of the b1Σ+ and a1Δ states in NH by ab initio methods
Authors:Christel M Marian  Rainer Klotz
Institution:Lehrstuhl für Theoretische Chemie, Universität Bonn, Wegelerstrasse 12, D-5300 Bonn 1, West Germany
Abstract:Probabilities for the spin-forbidden transitions from the b1Σ+ and a1Δ states to the X3Σ? ground state of NH have been evaluated by a first-order perturbation expansion into S-eigenfunctions Nine 3Π and 1Π, five 1Σ+ and three 3Σ? states have been calculated by the MRD CI method at the experimental equilibrium distance of the X3Σ? state (1.0362 Å) which cover a vertical spectral region of = 100000 cm?1. The expansion terms of the perturbation sum are spin-orbit coupling coefficients obtained by using the Breit-Pauli one- and two-electron spin-orbit operator. The radiative lifetime of b1Σ+ has been determined in the Franck-Condon approximation to be 72 ms from ab initio data and 97 ms if experimental excitation energies for the low-lying valence states are employed. Recent experiments give a somewhat shorter lifetime for the corresponding 0-0 transition of 53 ms. The lifetime is governed by the transition to the 3Σ?±1 level of the non-rotating molecule, borrowing its intensity mainly from the A3Π → X3Σ? dipole transition. The second possible transition to the Ω = 0 level of the ground state is found to be weak. A similar relation of μ10 is expected for all the hydrogen containing isovalent molecules such as PH and AsH. The radiative lifetime of the a1Δ state has been calculated to be = 1.7 s. Recent matrix experiments predict a gas-phase lifetime of at least 3 s. Further experimental and theoretical investigations are in progress to clarify this unusual finding that the experimentally determined lifetime is longer than that calculated theoretically.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号