首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Influence of viscosity on the flow over the sharp edge of bodies consisting of a spherical segment joined to an inverted cone
Authors:Yu Ya Karpeiskii  K N Filippov
Abstract:The results are given of an experimental investigation of the supersonic axisymmetric flow over a body consisting of a spherical segment joined to an inverted cone in the neighborhood of the point of inflection of the profile (Fig. 1a). For the limiting case of a cylinder with a flat end and M = 3, a study was made of the influence of the Reynolds number and the state of the boundary layer on the parameters of the local separation region formed near the inflection (Fig. 1b). It was found that there is an appreciable decrease in the length of the separation region and the pressure in it when the Reynolds number increases in the range Re = 105– 107 in the case of a laminar boundary layer on the flat end near the inflection point. A low level of the pressure on the surface of the body was achieved — of the order of thousandths of the pressure behind a normal shock. There was found to be a sharp increase in the pressure in the separation region when the boundary layer on the end becomes turbulent with transition to a flow regime that is self-similar with respect to the Reynolds number. Under conditions of a turbulent boundary layer, systematic experimental data on the pressure on the inverted cone near the point of inflection of such bodies were obtained and generalized.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 154–157, January–February, 1981.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号