首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Zinc oxide nanostructures: morphology derivation and evolution
Authors:Ye Changhui  Fang Xiaosheng  Hao Yufeng  Teng Xuemei  Zhang Lide
Institution:Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, and Graduate School of Chinese Academy of Sciences, Hefei 230031, P. R. China. chye@issp.ac.cn
Abstract:Zinc oxide nanostructures of various types, including nanobelts, nanoplatelets, nanowires, and nanorods, have been synthesized via well-developed routes by many research groups. However, so far, the underlying mechanism for the morphology derivation and evolution of the nanostructures has not been elucidated in depth. In this article, we report the systematic investigation of the morphology evolution characteristics of ZnO nanostructures from dense rods to dense nanoplatelets, nanoplatelet flowers, dense nanobelt flowers, and nanowire flowers in an evaporation-physical transport-condensation approach. Through the use of crystal growth theory, the determining factors for the formation of different nanostructural morphologies were found to be gas-phase supersaturation and the surface energy of the growing surface planes. Other experimental parameters such as the temperature at the source and the substrate, the temperature difference and the distance between the source and the substrate, the heating rate of the furnace, the gas flow rate, the ceramic tube diameter, and the starting material are all correlated with supersaturation and impose an effect on the morphology evolution. This finding may have an important impact on the qualitative understanding of the morphology evolution of nanostructures and the achieving of desired nanostructures controllably.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号