首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Mechanism of the mild functionalization of arenes by diboron reagents catalyzed by iridium complexes. Intermediacy and chemistry of bipyridine-ligated iridium trisboryl complexes
Authors:Boller Timothy M  Murphy Jaclyn M  Hapke Marko  Ishiyama Tatsuo  Miyaura Norio  Hartwig John F
Institution:Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, USA.
Abstract:This paper describes mechanistic studies on the functionalization of arenes with the diboron reagent B(2)pin(2) (bis-pinacolato diborane(4)) catalyzed by the combination of 4,4'-di-tert-butylbipyridine (dtbpy) and olefin-ligated iridium halide or olefin-ligated iridium alkoxide complexes. This work identifies the catalyst resting state as Ir(dtbpy)(COE)(Bpin)(3)] (COE = cyclooctene, Bpin = 4,4,5,5-tetramethyl-1,3,2-dioxaborolanyl). Ir(dtbpy)(COE)(Bpin)(3)] was prepared by independent synthesis in high yield from Ir(COD)(OMe)](2), dtbpy, COE, and HBpin. This complex is formed in low yield from Ir(COD)(OMe)](2), dtbpy, COE, and B(2)pin(2). Kinetic studies show that this complex reacts with arenes after reversible dissociation of COE. An alternative mechanism in which the arene reacts with the Ir(I) complex Ir(dtbpy)Bpin] after dissociation of COE and reductive elimination of B(2)pin(2) does not occur to a measurable extent. The reaction of Ir(dtbpy)(COE)(Bpin)(3)] with arenes and the catalytic reaction of B(2)pin(2) with arenes catalyzed by Ir(COD)(OMe)](2) and dtbpy occur faster with electron-poor arenes than with electron-rich arenes. However, both the stoichiometric and catalytic reactions also occur faster with the electron-rich heteroarenes thiophene and furan than with arenes, perhaps because eta(2)-heteroarene complexes are more stable than the eta(2)-arene complexes and the eta(2)-heteroarene or arene complexes are intermediates that precede oxidative addition. Kinetic studies on the catalytic reaction show that Ir(dtbpy)(COE)(Bpin)(3)] enters the catalytic cycle by dissociation of COE, and a comparison of the kinetic isotope effects of the catalytic and stoichiometric reactions shows that the reactive intermediate Ir(dtbpy)(Bpin)(3)] cleaves the arene C-H bond. The barriers for ligand exchange and C-H activation allow an experimental assessment of several conclusions drawn from computational work. Most generally, our results corroborate the conclusion that C-H bond cleavage is turnover-limiting, but the experimental barrier for this bond cleavage is much lower than the calculated barrier.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号