首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Quantifying the Thermodynamics of Ligand Binding to CsPbBr3 Quantum Dots
Authors:Sara R Smock  Prof Travis J Williams  Prof Richard L Brutchey
Institution:1. Department of Chemistry, University of Southern California, Los Angeles, CA, USA;2. Loker Hydrocarbon Institute, University of Southern California, Los Angeles, CA, USA
Abstract:Cesium lead halide perovskites are an emerging class of quantum dots (QDs) that have shown promise in a variety of applications; however, their properties are highly dependent on their surface chemistry. To this point, the thermodynamics of ligand binding remain unstudied. Herein, 1H NMR methods were used to quantify the thermodynamics of ligand exchange on CsPbBr3 QDs. Both oleic acid and oleylamine native ligands dynamically interact with the CsPbBr3 QD surface, having individual surface densities of 1.2–1.7 nm?2. 10‐Undecenoic acid undergoes an exergonic exchange equilibrium with bound oleate (Keq=1.97) at 25 °C while 10‐undecenylphosphonic acid undergoes irreversible ligand exchange. Undec‐10‐en‐1‐amine exergonically exchanges with oleylamine (Keq=2.52) at 25 °C. Exchange occurs with carboxylic acids, phosphonic acids, and amines on CsPbBr3 QDs without etching of the nanocrystal surface; increases in the steady‐state PL intensities correlate with more strongly bound conjugate base ligands.
Keywords:CsPbBr3  ligands  NMR spectroscopy  perovskites  quantum dots
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号