首页 | 本学科首页   官方微博 | 高级检索  
     


Rigid MIIL2Gd2III (M = Fe, Ru) complexes of a terpyridine-based heteroditopic chelate: a class of candidates for MRI contrast agents
Authors:Costa Jérôme  Ruloff Robert  Burai László  Helm Lothar  Merbach André E
Affiliation:Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratoire de Chimie Inorganique et Bioinorganique, EPFL-BCH, CH-1015 Lausanne, Switzerland.
Abstract:Rigid chelates of high-molecular weight, [M(tpy-DTTA)2]6- (M = Fe, Ru), are obtained upon self-assembly around one M(II) ion of two terpyridine-based molecules substituted in the 4'-position with the polyaminocarboxylate diethylenetriamine-N,N,N',N'-tetraacetate, tpy-DTTA4-. The protonation constants of tpy-DTTA4- (log K1 = 8.65(4), log K2 = 7.63(4), log K3 = 5.25(6), log K4 = 3.30(7)) and [Fe(tpy-DTTA)2]6- (log K1 = 8.40(4), log K2 = 7.26(4)) have been determined by potentiometry, 1H NMR and UV-vis titrations. The thermodynamic stability constant log K(GdL) of [Fe(tpy-DTTA)2Gd2(H2O)4] measured at 25 degrees C by potentiometry is 10.87. This relatively low value is due to the direct linkage of the polyaminocarboxylate part to the electron-withdrawing terpyridine. UV-vis absorbance spectra of [M(tpy-DTTA)2Gd2(H2O)4] and 1H NMR spectra of [M(tpy-DTTA)2Eu2(H2O)4] revealed similar solution behavior of the Fe and Ru complexes. An I(d) water-exchange mechanism (DeltaV++ = +6.8 +/- 1 cm3 mol(-1)) with a rate constant of k(ex)298 = (5.1 +/- 0.3) x 10(6) s(-1) has been found for [Fe(tpy-DTTA)2Gd2(H2O)4] by 17O NMR. A slow rotational correlation time (tau(RO) = 410 +/- 10 ps) and the presence of two water molecules (q = 2) in the coordination inner-sphere of each Gd(III) ion have also been determined for this complex. A remarkably high relaxivity has been observed for both [M(tpy-DTTA)2Gd2(H2O)4] complexes (at 20 MHz and 37 degrees C, r(1) = 15.7 mM(-1) s(-1) for the Fe complex, and r(1) = 15.6 mM(-1) s(-1) for the Ru complex).
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号