首页 | 本学科首页   官方微博 | 高级检索  
     


Structural Changes Induced by Quinones: High-Resolution Microwave Study of 1,4-Naphthoquinone
Authors:Shefali Saxena  Sanjana Panchagnula  Dr. M. Eugenia Sanz  Dr. Cristóbal Pérez  Dr. Luca Evangelisti  Prof. Brooks H. Pate
Affiliation:1. Department of Chemistry, King's College London, London, United Kingdom;2. Department of Chemistry, University of Virginia, Charlottesville, VA, USA
Abstract:1,4-Naphthoquinone (1,4-NQ) is an important product of naphthalene oxidation, and it appears as a motif in many biologically active compounds. We have investigated the structure of 1,4-NQ using chirped-pulse Fourier transform microwave spectroscopy and quantum chemistry calculations. The rotational spectra of the parent species, and its 13C and 18O isotopologues were observed in natural abundance, and their spectroscopic parameters were obtained. This allowed the determination of the substitution rs, mass-weighted rm and semi-experimental reSE structures of 1,4-NQ. The obtained structural parameters show that the quinone moiety mainly changes the structure of the benzene ring where it is inserted, modifying the C−C bonds to having predominantly single or double bond character. Furthermore, the molecular electrostatic surface potential reveals that the quinone ring becomes electron deficient while the benzene ring remains a nucleophile. The most electrophilic areas are the hydrogens attached to the double bond in the quinone ring. Knowledge of the nucleophilic and electrophilic areas in 1,4-NQ will help understanding its behaviour interacting with other molecules and guide modifications to tune its properties.
Keywords:PAH  quantum-chemistry calculations  quinones  rotational spectroscopy  structural determination
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号