首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Rationalizing the AlI-Promoted Oxidative Addition of C−C Versus C−H Bonds in Arenes
Authors:Jorge Juan Cabrera-Trujillo  Prof Dr Israel Fernández
Institution:Departamento de Química Orgánica I and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
Abstract:The factors controlling the oxidative addition of C−C and C−H bonds in arenes mediated by AlI have been computationally explored by means of Density Functional Theory calculations. To this end, we compared the processes involving benzene, naphthalene and anthracene which are promoted by a recently prepared anionic AlI-carbenoid. It is found that this species exhibits a strong tendency to oxidatively activate C−H bonds over C−C bonds, with the notable exception of benzene, where the C−C bond activation is feasible but only under kinetic control reaction conditions. State-of-the-art computational methods based on the combination of the Activation Strain Model of reactivity and the Energy Decomposition Analysis have been used to rationalize the competition between both bond activation reactions as well as to quantitatively analyze in detail the ultimate factors controlling these transformations.
Keywords:activation strain  aluminum  aromaticity  density functional calculations  oxidative addition
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号