首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Hydroxylation of Aromatics by H2O2 Catalyzed by Mononuclear Non-heme Iron Complexes: Role of Triazole Hemilability in Substrate-Induced Bifurcation of the H2O2 Activation Mechanism
Authors:Dr Jean-Noël Rebilly  Wenli Zhang  Dr Christian Herrero  Dr Hachem Dridi  Dr Katell Sénéchal-David  Dr Régis Guillot  Prof Frédéric Banse
Institution:Institut de Chimie Moléculaire et des Matériaux d'Orsay, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay cedex, France
Abstract:Rieske dioxygenases are metalloenzymes capable of achieving cis-dihydroxylation of aromatics under mild conditions using O2 and a source of electrons. The intermediate responsible for this reactivity is proposed to be a cis-FeV(O)(OH) moiety. Molecular models allow the generation of a FeIII(OOH) species with H2O2, to yield a FeV(O)(OH) species with tetradentate ligands, or {FeIV(O); OH.} pairs with pentadentate ones. We have designed a new pentadentate ligand, mtL42, bearing a labile triazole, to generate an “in-between” situation. Two iron complexes, (mtL42)FeCl](PF6) and (mtL42)Fe(OTf)2]), were obtained and their reactivity towards aromatic substrates was studied in the presence of H2O2. Spectroscopic and kinetic studies reflect that triazole is bound at the FeII state, but decoordinates in the FeIII(OOH). The resulting (mtL42)FeIII(OOH)(MeCN)]2+ then lies on a bifurcated decay pathway (end-on homolytic vs. side-on heterolytic) depending on the addition of aromatic substrate: in the absence of substrate, it is proposed to follow a side-on pathway leading to a putative (N4)FeV(O)(OH), while in the presence of aromatics it switches to an end-on homolytic pathway yielding a {(N5)FeIV(O); OH.} reactive species, through recoordination of triazole. This switch significantly impacts the reaction regioselectivity.
Keywords:aromatic hydroxylation  catalysis  hydrogen peroxide  iron  non-heme
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号