首页 | 本学科首页   官方微博 | 高级检索  
     


Size-dependent partitioning of nano/microparticles mediated by membrane lateral heterogeneity
Authors:Tsutomu Hamada  Masamune Morita  Makiyo Miyakawa  Ryoko Sugimoto  Ai Hatanaka  Mun'delanji C Vestergaard  Masahiro Takagi
Affiliation:School of Materials Science, Japan Advanced Institute of Science and Technology , 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan.
Abstract:It is important that we understand the physical, chemical, and biological mechanisms that govern the interaction between nanoparticles (NPs) and heterogeneous cellular surfaces because of the possible cytotoxicity of engineered nanomaterials. In this study, we investigated the lateral localization of nano/microparticles within a biomimetic heterogeneous membrane interface using cell-sized two-phase liposomes. We found that lateral heterogeneity in the membrane mediates the partitioning of nano/microparticles in a size-dependent manner: small particles with a diameter of ≤200 nm were localized in an ordered phase, whereas large particles preferred a fluidic disordered phase. This partitioning behavior was verified by temperature-controlled membrane miscibility transition and laser-trapping of associated particles. In terms of the membrane elastic energy, we present a physical model that explains this localization preference of nano/microparticles. The calculated threshold diameter of particles that separates the particle-partitioning phase was 260 nm, which is in close agreement with our observation (200 nm). These findings may lead to a better understanding of the basic mechanisms that underlie the association of nanomaterials within a cell surface.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号