首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Size control for two-dimensional iron oxide nanodots derived from biological molecules
Authors:Tominaga Masato  Matsumoto Manabu  Soejima Kazuki  Taniguchi Isao
Institution:Department of Applied Chemistry and Biochemistry, Faculty of Engineering, Kumamoto University, Kumamoto 860-8555, Japan. masato@gpo.kumamoto-u.ac.jp
Abstract:We demonstrated the fabrication of size-controlled two-dimensional iron oxide nanodots derived from the heat treatment of ferritin molecules self-immobilized on modified silicon surfaces. Ferritin molecules were immobilized onto 3-aminopropyltrimethoxysilane (3-APMS)-modified silicon surfaces by electrostatic interactions between negatively charged amino acids of ferritin molecules and amino terminal functional groups of 3-APMS. Heat treatments were performed at 400 degrees C for 60 min to fabricate two-dimensional nanodots based on ferritin cores. XPS and FT-IR results clearly indicate that ferritin shells were composed of amino acids and 3-APMS modifiers on silicon surfaces were eliminated by heat treatment. Nanodots on substrate surfaces corresponded to iron oxides. The size of nanodots was tunable in the range of 0-5 (+/-0.75) nm by in situ reactions of iron ion chelators with ferritin molecules immobilized on substrates before heat treatment.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号