首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A method of images for a penetrable acoustic waveguide
Authors:Fawcett John A
Institution:DRDC Atlantic, P.O. Box 1012, Dartmouth, NS B2Y 3Z7, Canada. john.fawcett@drdc-rddc.gc.ca
Abstract:In this paper the complex-image approximation to the reflection coefficient for water over a seabed half-space is used to generate an image representation for a bounded acoustic waveguide with an underlying layered seabed. The images are true point sources; they have constant amplitudes which are raypath independent and, in the case of a Pekeris waveguide, frequency-independent. This image representation is ideal for constructing the Green's function kernel of the boundary integral equation method for target scattering in a waveguide. The singular behavior of the Green's function for an infinitesimal source/receiver separation, possibly with the target adjacent to one of the interfaces, is modeled correctly and the image expansion has a simple analytic form which can be analytically differentiated. The method is also accurate for significant source/receiver separations, which means that it can be used in the modeling of scattering from large-sized objects and can also be used as an efficient and accurate short-range propagation model for harmonic and broadband propagation in a penetrable waveguide.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号