首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Structures of the chromophore binding sites in BLUF domains as studied by molecular dynamics and quantum chemical calculations
Authors:Obanayama Kazuya  Kobayashi Hiroaki  Fukushima Kentaro  Sakurai Minoru
Institution:Center for Biological Resources and Informatics, Tokyo Institute of Technology, Midori-ku, Yokohama, Japan.
Abstract:BLUF (blue-light sensing using FAD) domains constitute a new family of flavin-based blue light photoreceptors. The photocycle of BLUF is unique in the sense that a few hydrogen bond rearrangements are accompanied by only slight structural changes in the bound chromophore. The hydrogen bond rearrangements upon illumination have been inferred from spectral changes in the chromophore: approximately 10 nm redshift of the absorption maximum and approximately 16 cm(-1) downshift of the C4=O stretching frequency. However, the exact features of the hydrogen bond network around the active site are still the subject of some controversy. In particular, the orientation of a conserved Gln (Gln63 in AppA) is presently one of the most questioned topics in the field. Here we perform molecular dynamics simulations for the wild-type AppA, AppA1-124C20S, BlrB and T110078 and furthermore quantum chemical calculations to investigate their spectroscopic properties in the dark and signaling states. On the basis of these results, we reveal the dynamic aspect of hydrogen bonding networks at the active site and propose theoretically reasonable models for the dark and signaling states of the BLUF domains.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号