首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Rare-earth tricyanomelaminates [NH(4)]Ln[HC(6)N(9)](2)[H(2)O](7)H(2)O (Ln=La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy): structural investigation, solid-state NMR spectroscopy, and photoluminescence
Authors:Nag Abanti  Lotsch Bettina V  Schmedt Auf der Günne Jörn  Oeckler Oliver  Schmidt Peter J  Schnick Wolfgang
Institution:1. Department Chemie und Biochemie, Ludwig‐Maximilians‐Universit?t München, Butenandtstrasse 5–13 (D), 81377 München, Germany, Fax: (+49)?89‐2180‐77440;2. Solid‐State Lighting, Philips Research Laboratories, Weisshausstrasse 2, 52066 Aachen, Germany
Abstract:The rare-earth tricyanomelaminates, NH(4)]LnHC(6)N(9)](2)H(2)O](7)xH(2)O (LnTCM; Ln=La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy), have been synthesized through ion-exchange reactions. They have been characterized by powder as well as single-crystal X-ray diffraction analysis, vibrational spectroscopy, and solid-state (1)H, (13)C, and (15)N MAS NMR spectroscopy. The X-ray powder pattern common to all nine rare-earth tricyanomelaminates LnTCM (Ln=La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy) indicates that they are isostructural. The single-crystal X-ray diffraction pattern of LnTCM is indicative of non-merohedral twinning. The crystals are triclinic and separation of the twin domains as well as refinement of the structure were successfully carried out in the space group P1 for LaTCM (LaTCM; P1, Z=2, a=7.1014(14), b=13.194(3), c=13.803(3) A, alpha=90.11(3), beta=77.85(3), gamma=87.23(3) degrees , V=1262.8(4) A(3)). In the crystal structure, each Ln(3+) is surrounded by two nitrogen atoms from two crystallographically independent tricyanomelaminate moieties and seven oxygen atoms from crystal water molecules. The positions of all of the hydrogen atoms of the ammonium ions and water molecules could not be located from difference Fourier syntheses. The presence of NH(4)](+) ions as well as two NH groups belonging to two crystallographically independent monoprotonated tricyanomelaminate moieties has only been confirmed by subjecting LaTCM to solid-state (1)H, (13)C, and (15)N{(1)H} cross-polarization (CP) MAS NMR and advanced CP experiments such as cross-polarization combined with polarization inversion (CPPI). The (1)H 2D double-quantum single-quantum homonuclear correlation (DQ SQ) spectrum and the (15)N{(1)H} 2D CP heteronuclear-correlation (HETCOR) spectrum have revealed the hydrogen-bonded (N--HN) dimer of monoprotonated tricyanomelaminate moieties as well as H-bonding through NH(4)](+) ions and H(2)O molecules. The structures of the other eight rare-earth tricyanomelaminates (LnTCM; Ln=Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy) have been refined from X-ray powder diffraction data by the Rietveld method. Photoluminescence studies of NH(4)]EuHC(6)N(9)](2)H(2)O](7)xH(2)O have revealed orange-red (lambda(max)=615 nm) emission due to the (5)D(0)-(7)F(2) transition, whereas NH(4)]TbHC(6)N(9)](2)H(2)O](7)xH(2)O has been found to show green emission with a maximum at 545 nm arising from the (5)D(4)-(7)F(5) transition. DTA/TG studies of NH(4)]LnHC(6)N(9)](2)H(2)O](7)xH(2)O have indicated several phase transitions associated with dehydration of the compounds above 150 degrees C and decomposition above 200 degrees C.
Keywords:lanthanides  NMR spectroscopy  photoluminescence  structure elucidation  tricyanomelaminates
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号