首页 | 本学科首页   官方微博 | 高级检索  
     

共振线极化光实现原子矢量磁力仪的理论研究
引用本文:张军海,王平稳,韩煜,康崇,孙伟民. 共振线极化光实现原子矢量磁力仪的理论研究[J]. 物理学报, 2018, 67(6): 60701-060701. DOI: 10.7498/aps.67.20172108
作者姓名:张军海  王平稳  韩煜  康崇  孙伟民
作者单位:哈尔滨工程大学, 纤维集成光学教育部重点实验室, 哈尔滨 150001
基金项目:国家自然科学基金(批准号:U1631239,U1331114)资助的课题.
摘    要:共振线偏振光激发原子张量磁矩,本文理论研究在矢量磁场和射频场的共同作用下,张量磁矩进动的模型,求解刘维尔方程获得透射光时域完整解析解,包括直流、一次和二次谐波分量.研究发现:当进动的拉比频率Ω1/(22~(1/2))时,两谐波间的干涉效应使直流分量和一次谐波对称成分的单吸收峰劈裂成双峰,裂距((Ω~2+Ω~4-Ω~2-1)~(3/2))~(1/2),一次谐波反对称成分在共振处产生干涉条纹.研究结果显示,谐波间的干涉也可导致直流分量和二次谐波线宽仅为一次谐波线宽的38%,且存在磁场取向临界点,在不同的取向区间分别利用直流及两谐波共振信号辨析磁场变化,可获得最佳测磁灵敏度;同时还可通过共振时直流分量及两谐波对称成分振幅来确定磁场与激光极化方向的夹角,利用两谐波反对称成分相移的差值来确定待测磁场在垂直光极化方向投影与射频场方向的夹角,进而实现结构简单的张量磁矩进动型矢量磁力仪.这种磁力仪适合构成磁力仪阵列,可用于磁定位、水下磁异常源的检测和地磁导航等领域.

关 键 词:张量磁矩  矢量磁力仪  进动光谱
收稿时间:2017-09-23

Theory of atomic vector magnetometer using linearly polarized resonant light
Zhang Jun-Hai,Wang Ping-Wen,Han Yu,Kang Chong,Sun Wei-Min. Theory of atomic vector magnetometer using linearly polarized resonant light[J]. Acta Physica Sinica, 2018, 67(6): 60701-060701. DOI: 10.7498/aps.67.20172108
Authors:Zhang Jun-Hai  Wang Ping-Wen  Han Yu  Kang Chong  Sun Wei-Min
Affiliation:Key Lab of In-fiber Integrated Optics(Ministry Education), Harbin Engineering University, Harbin 150001, China
Abstract:As is well known a linearly polarized resonant laser will cause atoms to generate a magnetic tensor moment (MTM) by polarizing them. When there exists an external magnetic field, it is possible that the moment will precess around the field. In the presence of a radio frequency (RF) exciting source, we investigate theoretically the dependence of time-independent (direct current, DC), the first and second harmonic signal of the MTM precession on magnetic vector field, and obtain its analytical solution by solving the Liouville equation. The results show that the interference of both harmonic components will result in the precession spectrum evidently varying. A detailed explanation is described in the following. For the DC signal, Rabi frequency Ω of 1/(2√2) is a spectral splitting threshold. When it is greater than the threshold, the interference will cause single resonant absorption dip characterized usually to split into two dips, which has not been reported before to the best of our knowledge, and the separation between both the dips may be expressed as √3√Ω2+Ω4 -Ω2-1. For the first harmonic signal including symmetric and antisymmetric component, an interference fringe will appear near the center of antisymmetric part when Ω >1/(2√2), simultaneously its symmetric part behaves like the above dc component, such as splitting threshold and separation between both dips. With regard to the second harmonic signal, it is found that the interference can also lead to the width of the second harmonic decreasing to 38% compared with the case of the first harmonic signal. At the optimum RF Rabi frequency, on the assumption that noise spectral density is constant, it is theoretically shown that the most sensitive magnetometer, realized by the DC component or the first or second harmonic signal of the precession, depends only on the angle between the light polarization and the measured magnetic field.
In fact, we are able to obtain the modules of the measured magnetic vector by RF resonant frequency. The angle between the magnetic field and the laser polarization is determined just by the ratio of the intensity of the DC component to the intensity of the second harmonic signal and the ratio between the intensities of the symmetric parts of two harmonic signals in resonance, and another orientation angle between the measured field projection at the plane perpendicular to the light polarization and the direction of RF source depends on the phase difference between the antisymmetric components of both harmonic signals. Consequently, we demonstrate a vectorial atomic magnetometer that is realized by using the RF source and the linearly polarized resonant laser without rotating laser polarization. This kind of atomic magnetometer with simple sensor structure is easy to integrate vector magnetometer array which will be suitable for solving the inverse problem and geomagnetic navigation.
Keywords:magnetic tensor moment  vector magnetometer  precession spectrum
本文献已被 CNKI 等数据库收录!
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号