Abstract: | Laterally enlarged single crystal diamond is grown on(001) diamond substrates by microwave plasma chemical vapor deposition. Based on the largest side-to-side width of the seed of 7.5 mm, we achieve the as-grown epilayer with the width of about 10 mm between the same two sides. The luminescence difference between the broadened part of the single crystal diamond and the vertically epitaxial part is investigated by characterizing the vertical cross section of the sample, and the possible growth mechanism is suggested. Vertical epitaxy on the top(001)surface and lateral growth on the side surfaces occur simultaneously, and thus the growth fronts along the two directions adjoin and form a coalescence zone extending from the edge of the substrate towards the edge of the expanded single crystal diamond top surface. The luminescence intensity of the nitrogen-vacancy center is relatively high in the coalescence zone and a laterally grown part right below, which are attributed mainly to the higher growth rate. However, stress change and crystal quality change are negligible near the coalescence zone. |