首页 | 本学科首页   官方微博 | 高级检索  
     

激发光线宽对原子光致漂移速率的影响
引用本文:杨佳琦,刘加东,刘涛,张志忠. 激发光线宽对原子光致漂移速率的影响[J]. 物理学报, 2018, 67(11): 113201-113201. DOI: 10.7498/aps.67.20180375
作者姓名:杨佳琦  刘加东  刘涛  张志忠
作者单位:1. 清华大学工程物理系, 北京 100084;2. 核工业理化工程研究院, 天津 300180
摘    要:在光致漂移效应的研究中,激发光线宽会改变原子激发的速度选择性,进而影响漂移速率的大小.本文以原子光致漂移速率方程理论为基础,利用强碰撞模型描述原子与缓冲气体的碰撞作用,运用数值方法对速率方程进行求解计算,研究了激发光线宽对原子漂移速率的影响.研究结果表明,其他条件相同时,随着线宽的增大,漂移速率的值呈现先增大后减小的趋势.存在一个最佳的激发光线宽,使得原子的漂移速率达到最大值.最佳线宽与激发光功率密度、温度和缓冲气体压强有关.为了获得最佳的光致漂移效果,激发光应工作在最佳线宽条件下.当激发光线宽在最佳线宽附近波动时,设置激发光线宽略大于最佳线宽可减少线宽波动对漂移速率的影响,对获得较大漂移速率更为有利.

关 键 词:光致漂移  漂移速率  激光线宽
收稿时间:2018-03-02

Influence of laser linewidth on light-induced drift velocity of atom
Yang Jia-Qi,Liu Jia-Dong,Liu Tao,Zhang Zhi-Zhong. Influence of laser linewidth on light-induced drift velocity of atom[J]. Acta Physica Sinica, 2018, 67(11): 113201-113201. DOI: 10.7498/aps.67.20180375
Authors:Yang Jia-Qi  Liu Jia-Dong  Liu Tao  Zhang Zhi-Zhong
Affiliation:1. Department of Engineering Physics, Tsinghua University, Beijing 100084, China;2. Research Institute of Physical and Chemical Engineering of Nuclear Industry, Tianjin 300180, China
Abstract:Light-induced drift has many applications in astrophysics, semiconductor physics, and isotope separation. Light-induced drift velocity is a key parameter to characterize the effect of light-induced drift. Laser linewidth exerts a great influence on light-induced drift velocity through influencing the velocity selectivity of atomic excitation, so it is an important factor that cannot be ignored in the study of light-induced drift. However, in existing theoretical studies, the influence of laser linewidth is seldom considered and the exciting light is always treated as monochromatic light. Furthermore, in a few theoretical studies about laser linewidth, the numerical model adopted does not include all the factors of light-induced drift, such as energy level degeneracy, hyperfine structure, and collision model, which will cause the error of calculation. In order to study the influence of laser linewidth on light-induced drift velocity, a four-level rate equation model is established to describe the atomic energy level transition in the process of light-induced drift. In the theoretical model, we introduce strong collision model to describe collisions between atoms and buffer gas. The influences of energy level degeneracy and hyperfine structure are also taken into account. Numerical method is used to calculate the four-level rate equation. According to the calculation results, the influence of laser linewidth on drift velocity of alkali metal atoms is analyzed. The results show that as the linewidth increases, the value of drift velocity first increases and then decreases. There is an optimal linewidth that maximizes the drift velocity. For the best light-induced drift effect, the laser should work under the optimal linewidth condition. When the laser linewidth fluctuates near the optimum linewidth, the laser linewidth should be set to be slightly wider than the optimal linewidth. This can reduce the influence of fluctuation and obtain a better drift effect. In addition, as the laser linewidth increases, the optimum power density corresponding to the maximum drift velocity decreases. When the laser linewidth is narrow, small fluctuations near the optimal laser power density will not have great influence on drift velocity. When the laser linewidth is wide, the power density should be set strictly. The optimum linewidth is related to laser power density, temperature and buffer gas pressure. As the laser power density increases, the value of optimum linewidth first increases rapidly and then decreases slowly. The value of optimal linewidth also increases linearly with the increase of temperature, and it decreases with the increase of buffer gas pressure. In conclusion, the laser linewidth does play a key role in the process of light-induced drift. The results of this study can provide a theoretical basis for future experiments, and be a good reference to the selection of exciting light.
Keywords:light-induced drift  drift velocity  laser linewidth
本文献已被 CNKI 等数据库收录!
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号