首页 | 本学科首页   官方微博 | 高级检索  
     检索      

紫外域多纵模高光谱分辨率激光雷达探测气溶胶的技术实现和系统仿真
引用本文:高飞,南恒帅,黄波,汪丽,李仕春,王玉峰,刘晶晶,闫庆,宋跃辉,华灯鑫.紫外域多纵模高光谱分辨率激光雷达探测气溶胶的技术实现和系统仿真[J].物理学报,2018,67(3):30701-030701.
作者姓名:高飞  南恒帅  黄波  汪丽  李仕春  王玉峰  刘晶晶  闫庆  宋跃辉  华灯鑫
作者单位:西安理工大学机械与精密仪器工程学院, 西安 710048
基金项目:国家自然科学基金(批准号:41775035,41627807,41305023)、中国博士后基金(批准号:2014M560799)和陕西省科技计划项目(批准号:2014KJXX-64,2014JQ5174)资助的课题.
摘    要:多纵模高光谱分辨率激光雷达是一种新型的高光谱分辨率激光雷达.本文在研究典型高功率Nd:YAG脉冲激光器的多纵模模式及其在大气中传输的气溶胶米散射和瑞利散射光谱的基础上,设计紫外域多纵模高光谱分辨率激光雷达系统,采用窄带干涉滤光片滤除太阳背景光的影响,设计可调谐马赫-曾德尔干涉仪,分离提取多纵模激光回波中的气溶胶米散射和瑞利散射光谱,并利用马赫-曾德尔干涉仪双通道输出的互补性原理,精确反演气溶胶光学参量.系统仿真结果表明,所设计的紫外域多纵模高光谱分辨率激光雷达能够实现10 km高度内的气溶胶光学参量精细探测.

关 键 词:高光谱分辨率激光雷达  多纵模脉冲激光  大气气溶胶  精细探测
收稿时间:2017-09-14

Technical realization and system simulation of ultraviolet multi-mode high-spectral-resolution lidar for measuring atmospheric aerosols
Gao Fei,Nan Heng-Shuai,Huang Bo,Wang Li,Li Shi-Chun,Wang Yu-Feng,Liu Jing-Jing,Yan Qing,Song Yue-Hui,Hua Deng-Xin.Technical realization and system simulation of ultraviolet multi-mode high-spectral-resolution lidar for measuring atmospheric aerosols[J].Acta Physica Sinica,2018,67(3):30701-030701.
Authors:Gao Fei  Nan Heng-Shuai  Huang Bo  Wang Li  Li Shi-Chun  Wang Yu-Feng  Liu Jing-Jing  Yan Qing  Song Yue-Hui  Hua Deng-Xin
Institution:School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an 710048, China
Abstract:Multi-mode high-spectral-resolution lidar is a new concept of high-spectral-resolution lidar, which uses the multiple-longitudinal-mode pulsed laser rather than the single frequency laser. In this paper, we analyze the multiple longitudinal mode and its spectral distribution of a typical Nd:YAG laser, and calculate its corresponding Mie scattering and Rayleigh scattering spectra, which are a convolution between the spectral distribution of multiple-longitudinal-mode laser pulse and that of the Mie and Rayleigh scattering excited by a single frequency laser pulse. According to the spectral analyses of the elastic lidar returns, we design an ultraviolet multi-mode high-spectral-resolution lidar, in which a high-power non-seeded Nd:YAG pulsed laser at the third harmonic 355 nm wavelength is used as a transmitter, and a Cassegrain telescope serves as a receiver. In the polychromator, a narrow band interfering filter is selected to block the solar background, and a tunable Mach-Zehnder interferometer (MZI) is designed to separate the aerosol Mie scattering signals from the molecular Rayleigh scattering signals excited by the multi-mode pulsed laser. The MZI is composed of a roof mirror mounted on a piezoelectric ceramic and two beam splitters. The optical path difference of the MZI can be adjusted by the piezoelectric ceramic, while its optimum value should make the correspondence between the free spectral range of MZI and the interval between longitudinal modes of Nd:YAG pulsed laser. The photomultiplier tube is selected as a detector, whose output is the convolution between the transmission function of MZI and the Mie and Rayleigh signals excited by the multi-longitudinal mode laser pulse. In the practical experiment, the optimal optical path difference of MZI can be determined by using envelope analysis. For the transmitter laser, when one channel has a maximum output signal and the other has a minimum output, the center wavelength of each longitudinal mode of laser is locked in the optimal optical path difference. The channel of MZI with the maximum output is to pass the Mie scattering signal, while the channel with the minimum output is to block the Mie scattering signal. The aerosol optical characteristics are retrievable by using the complementary properties of the two output channels of MZI. In order to verify the feasibility of the multi-mode high spectral resolution lidar, the system simulation is carried out by using the real atmospheric model and the designed lidar system parameters. The simulation results show that the designed ultraviolet multi-mode high-spectral-resolution lidar can realize the accurate measurement of aerosol within a height of 10 km.
Keywords:high-spectral-resolution-lidar  multi-mode pulse laser  atmospheric aerosol  accurate measurement
本文献已被 CNKI 等数据库收录!
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号