首页 | 本学科首页   官方微博 | 高级检索  
     

用于热光伏系统的近场辐射光谱控制表面结构
引用本文:于海童,刘东,杨震,段远源. 用于热光伏系统的近场辐射光谱控制表面结构[J]. 物理学报, 2018, 67(2): 24209-024209. DOI: 10.7498/aps.67.20171531
作者姓名:于海童  刘东  杨震  段远源
作者单位:1. 清华大学, 热科学与动力工程教育部重点实验室, 二氧化碳资源化利用与减排技术北京市重点实验室, 北京 100084;2. 南京理工大学能源与动力工程学院, 南京 210094
基金项目:国家自然科学基金(批准号:51621062,51606099)资助的课题.
摘    要:为提升近场热光伏发电系统的能源转换效率和发电功率,设计了Ⅲ-Ⅴ族半导体表面的矩形光栅结构,以实现从热发射器到热光伏电池的近场辐射热流选择性调制.使用在近红外波段具有表面等离子体激元特性的掺杂氧化锌作为热发射器,在GaSb热光伏电池表面添加亚微米二维光栅结构,在近场间距下形成与表面波耦合的陷光效应,由此有选择性地增强了电池能带内的光谱辐射热流.有别于以往类似研究中常用的等效近似方法,开展了时域有限差分方法模拟,能够严格考虑周期性结构细节,结合以涨落耗散理论为基础的Langevin方法,直接计算了复杂结构参与的近场辐射传热问题,以此揭示表面结构影响近场辐射传热的物理机理.结果显示使用带表面结构的薄膜GaSb电池,可使辐射热流的光谱峰值达到同温度远场黑体辐射源情况下的2.84倍,且热流增益区集中在波长略短于电池能带的窄波段区间,适应高效率、高功率热光伏系统对辐射传热设计的要求.

关 键 词:近场辐射  光谱控制  热光伏系统  时域有限差分法
收稿时间:2017-07-03

Surface structure for manipulating the near-field spectral radiative transfer of thermophotovoltaics
Yu Hai-Tong,Liu Dong,Yang Zhen,Duan Yuan-Yuan. Surface structure for manipulating the near-field spectral radiative transfer of thermophotovoltaics[J]. Acta Physica Sinica, 2018, 67(2): 24209-024209. DOI: 10.7498/aps.67.20171531
Authors:Yu Hai-Tong  Liu Dong  Yang Zhen  Duan Yuan-Yuan
Affiliation:1. Key Laboratory of Thermal Science and Power Engineering, Ministry of Education, Beijing Key Laboratory for CO2 Utilization and Reduction Technology, Tsinghua University, Beijing 100084, China;2. School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
Abstract:To improve the efficiency and output power of the nano-gap thermophotovoltaic (TPV) power generation system, surface rectangular grating structures are added to the top surface of the group Ⅲ-V semiconductor cell to control the spectrum of near-field radiative transfer. Doped zinc oxide that supports surface waves at near-infrared wavelengths is selected as the TPV emitter. When paired with GaSb grating structures, the surface plasmon polariton excited by the emitter and the light trapping effect by the grating tunnels will be coupled, which results in a significantly and selectively enhanced near-field radiative heat flux within a narrow spectral region above the cell bandgap, thereby fulfilling the design purpose. This physical mechanism is explained by a direct finite-difference time-domain (FDTD) simulation based on the Langevin approach. The material volume meshgrids filled with random dipole sources can act as the thermal emission source and the radiative heat flux is calculated by solving the Maxwell equations numerically. The spectral results show that adding rectangular grating structures to GaSb not only increases radiative transfer in the expected wavelength region over the unstructured case, resulting in a heat flux surpassing that of a far-field blackbody source at the same temperature, but also suppresses the unwanted long-wavelength heat flux that causes radiative loss and cell heating. With a vacuum gap of 200 nm between the emitter and the cell, using a bulk GaSb cell with rectangular gratings can double the spectral flux of the blackbody emitter case, and using an ultrathin GaSb cell with surface structures and back reflectors further increases this ratio to 2.84 due to the total internal reflection controlled by the cell thickness. The amplitude and wavelength of the spectral peak are controlled by the grating size parameters. Low filling ratio gratings with lower-aspect-ratio grating channels generally have sharper enhancement peaks but lower total radiative heat flux, while high filling ratio structures with higher-aspect-ratio channels have better heat flux improvement but might also result in lower conversion efficiency due to the broader spectrum. The rigorous approach reveals the detailed physical mechanism that is otherwise unseen with effective medium approaches for inhomogeneous structures or the Derjaguin proximity approximation. Overall the results of this study enable an enhancement of near-field radiative heat flux limited within a narrow wavelength range shorter than the cell bandgap, offering practical benefit to the application of TPV power generation with higher feasible power and conversion efficiency.
Keywords:near-field radiation  spectral control  thermophotovoltaic system  finite-difference time-domain method
本文献已被 CNKI 等数据库收录!
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号