首页 | 本学科首页   官方微博 | 高级检索  
     

基于涂覆石墨烯的三根电介质纳米线的THz波导的模式特性分析
引用本文:卫壮志,薛文瑞,彭艳玲,程鑫,李昌勇. 基于涂覆石墨烯的三根电介质纳米线的THz波导的模式特性分析[J]. 物理学报, 2018, 67(10): 108101-108101. DOI: 10.7498/aps.67.20180036
作者姓名:卫壮志  薛文瑞  彭艳玲  程鑫  李昌勇
作者单位:1. 山西大学物理电子工程学院, 太原 030006;2. 山西大学, 量子光学与光量子器件国家重点实验室, 激光光谱研究所, 太原 030006;3. 山西大学, 极端光学协同创新中心, 太原 030006
基金项目:国家自然科学基金(批准号:61378039,61575115)和国家基础科学人才培养基金(批准号:J1103210)资助的课题.
摘    要:研究了一种基于涂覆石墨烯的三根电介质纳米线的THz波导,采用多极方法对这种波导所支持的5种低阶模的有效折射率的实部和传播长度进行了解析分析.结果表明,通过改变工作频率、中间纳米线半径、纳米线之间的间距以及石墨烯的费米能,可以有效地调节波导的模式特性.当工作频率从30 THz增加到40 THz时,这些模式的有效折射率的实部增大,传播长度减小,并且在变化的过程中会出现交叉现象.当中间纳米线的半径从25 nm增加到75 nm时,除了模式3和模式4基本不受影响,其他模式有效折射率的实部增大,传播长度变化各不相同.当纳米线之间的间距从10 nm增加到50 nm时,除了模式3和模式4基本不受影响,其他模式有效折射率的实部减小,传播长度增大,并且在变化的过程中会出现交叉现象.当石墨烯的费米能从0.4 eV增加到1.2 eV时,有效折射率的实部减小,传播长度增大.计算表明,多极法得到的结果与有限元方法得到的结果完全一致.本研究可以为基于涂覆石墨烯的电介质纳米线的THz波导的设计、制作和应用提供理论基础.

关 键 词:石墨烯  纳米线  波导  多极方法
收稿时间:2018-01-05

Modes characteristics analysis of THz waveguides based on three graphene-coated dielectric nanowires
Wei Zhuang-Zhi,Xue Wen-Rui,Peng Yan-Ling,Cheng Xin,Li Chang-Yong. Modes characteristics analysis of THz waveguides based on three graphene-coated dielectric nanowires[J]. Acta Physica Sinica, 2018, 67(10): 108101-108101. DOI: 10.7498/aps.67.20180036
Authors:Wei Zhuang-Zhi  Xue Wen-Rui  Peng Yan-Ling  Cheng Xin  Li Chang-Yong
Affiliation:1. College of Physics and Electronic Engineering, Shanxi University, Taiyuan 030006, China;2. State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China;3. Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
Abstract:In this paper, the real parts of the effective refractive indexes and the propagating lengths of five low-order modes of the terahertz waveguides based on three graphene-coated dielectric nanowires are analyzed by using the multipole method. The formation of these five lowest order modes can be attributed to the five combinations between the two lowest order modes supported when three nanowires exist alone. Therefore they are named Mode 1, Mode 2, Mode 3, Mode 4, and Mode 5 in sequence. The results show that the mode characteristics of the waveguide can be effectively tuned by changing the operating frequency, the radius of the intermediate nanowire, the gap distance between the nanowires and the Fermi energy of graphene. As the operating frequency increases from 30 THz to 40 THz, the real part of each of the effective refractive indexes increases and the propagation length decreases, and the crossover phenomenon occurs in the process of change. In addition, the real parts of the effective refractive indexes and the propagation lengths of Modes 3 and 4 are basically the same. When the radius of the middle nanowire increases from 25 nm to 75 nm, the real parts of the effective refractive indexes of Modes 1 and 2 increase, and the propagation length of Mode 1 decreases and then increases. Besides the real parts of the effective refractive indexes and the propagation lengths of Modes 3 and 4 are basically not affected by the change of radius, and the values of these two modes are basically the same. For Mode 5, the real part of the effective refractive index and propagation length slowly increase. When the spacing between the nanowires increases from 10 nm to 50 nm, Modes 3 and 4 are basically unaffected by the change of spacing, and the values of these two modes are basically the same. The real parts of the effective refractive indexes of the other modes decrease and the propagation lengths increase and eventually stabilize, and the crossover phenomenon occurs in the process of change. As the Fermi energy of graphene increases from 0.4 eV to 1.2 eV, the real part of the effective refractive index decreases and the propagation length increases. The calculation shows that the result obtained by the multipole method is exactly the same as that obtained by the finite element method. To date, no one has analyzed the terahertz waveguides based on three graphene-coated dielectric nanowires. This work can provide a theoretical basis for the design, fabrication and application of terahertz waveguide based on graphene-coated dielectric nanowires. Such waveguides have potential applications in the field of mode-division multiplexing.
Keywords:graphene  nanowires  waveguides  multipole method
本文献已被 CNKI 等数据库收录!
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号