首页 | 本学科首页   官方微博 | 高级检索  
     

基于光纤中超短脉冲非线性传输机理与特定光谱选择技术的多波长飞秒激光的产生
引用本文:吕志国,杨直,李峰,李强龙,王屹山,杨小君. 基于光纤中超短脉冲非线性传输机理与特定光谱选择技术的多波长飞秒激光的产生[J]. 物理学报, 2018, 67(18): 184205-184205. DOI: 10.7498/aps.67.20181026
作者姓名:吕志国  杨直  李峰  李强龙  王屹山  杨小君
作者单位:中国科学院西安光学精密机械研究所, 瞬态光学与光子技术国家重点实验室, 西安 710119
基金项目:中国科学院"西部之光"人才培养引进计划(批准号:XAB2016B21)和国家自然科学基金(批准号:61690222)资助的课题.
摘    要:高集成、高可靠性宽调谐飞秒激光源在超快光谱学、量子光学及生物成像等研究与应用领域具有重要价值.如在生物多光子显微成像中,具有适中能量的宽调谐飞秒激光源不仅可满足多种生物组织荧光激发所需的峰值功率与激发波长,而且也可以显著提升非线性荧光产生效率、成像分辨率以及增大成像穿透深度.采用自主研发的高可靠性全保偏光纤飞秒激光器作为抽运源,基于低色散光纤中高峰值功率飞秒激光脉冲非线性传输引起的光谱加宽机制,本文开展了多波长全光纤飞秒激光产生技术研究.通过采用中心波长在980, 1000,1050, 1070与1100 nm的带通滤波片选择性地对单模光纤输出光谱中最左边与最右边光谱旁瓣进行滤波,在上述中心波长处分别可获得203, 195, 196, 187与194 fs的激光输出.本文提出的基于全光纤飞秒激光脉冲在单模光纤中非线性传输引起的光谱加宽机制与特定光谱选择技术的实验方案为高集成、高可靠性宽调谐飞秒激光源的实现提供了新的研究途径.

关 键 词:单模光纤  非线性  宽调谐  飞秒激光
收稿时间:2018-05-27

Generation of multi-wavelength femtosecond laser pulse based on nonlinear propagation of high peak power ultrashort laser pulse in single-mode fiber and spectral selectivity technology
L,uuml,Zhi-Guo,Yang Zhi,Li Feng,Li Qiang-Long,Wang Yi-Shan,Yang Xiao-Jun. Generation of multi-wavelength femtosecond laser pulse based on nonlinear propagation of high peak power ultrashort laser pulse in single-mode fiber and spectral selectivity technology[J]. Acta Physica Sinica, 2018, 67(18): 184205-184205. DOI: 10.7498/aps.67.20181026
Authors:  Zhi-Guo  Yang Zhi  Li Feng  Li Qiang-Long  Wang Yi-Shan  Yang Xiao-Jun
Affiliation:State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China
Abstract:Highly-integrated high-reliability widely-tunable femtosecond laser sources have important application values in various research and application fields, such as ultrafast spectroscopy, quantum optics, remote sensing and bio-imaging. In multi-photon excited fluorescence microscopy, femtosecond laser sources with moderate pulse energy and wide wavelength tunable range can not only meet the application requirements of the different tissue structures for the peak power and excitation wavelength, but also improve the nonlinear fluorescence efficiency and imaging resolution of the sample, and thus enhancing the penetration depth. Considering the extensive application prospect and important scientific research significance of the widely tunable femtosecond laser, in this paper we conduct an experimental research of the high repetition rate multi-wavelength femtosecond laser generation in compact sized and low-cost configuration based on the nonlinear propagation scheme of the high peak power femtosecond laser pulses in single-mode fiber.In experiment, we first construct a highly-integrated reliable all-polarization-maintaining fiber femtosecond laser amplifier, which mainly consists of an environmentally stable all-polarization-maintaining fiber mode-locked laser oscillator, single-mode fiber stretcher, a single-mode power pre-amplifier, a dual-cladding Yb-fiber amplifier, and transmission grating-pair compressor. Self-starting mode-locked operation is assured with a semiconductor saturable absorber mirror, and intra-cavity dispersion compensation is realized by a chirped fiber Bragg grating in the mode-locked oscillator. The mode-locked oscillator, which delivers laser pulses with center wavelength peaked at 1035 nm, is robust operation as temperature changes from 10℃ to 40℃ and the measured power fluctuation is less than 1% RMS over 168 hours at 23℃. The amplified high repetition rate laser pulses are compressed in a double-pass 1000 lines/mm transmission grating-pair compressor. After compression, laser pulses with 5.83 W average power and 264 fs pulse duration at 34 MHz repetition rate can be obtained. Simultaneously, we also study the dependence of the compressed pulse duration on the amplified output power.Employing a home-made high reliable compact sized all-polarization-maintaining fiber femtosecond laser as a pump source and low-cost single-mode fiber as a nonlinear medium, the generation technology of the widely tunable femtosecond laser in only fiber format is also studied based on the self-phase modulation nonlinear spectral broadening mechanism. Simultaneously, in order to reduce the effect of the dispersion on the spectral broadening as much as possible, an 80-mm-long fiber is used in experiment. The used single-mode spectral broadening fiber has a 6-μm-diameter core and 20 fs2/mm dispersion coefficient. By coupling the femtosecond pump laser pulses into the 6-μm-diameter fiber core, the output spectrum presents a significant nonlinear broadening. The coupled pump power can be continuously adjusted by a combination of a half-wave plate and a Glan laser polarizer. After bandpass filtering the leftmost and rightmost spectral lobes in self-phase modulation and self-steeping induced broadened spectrum with bandpass filters centered at 980, 1000, 1050, 1070 and 1100 nm, the laser pulses with 203, 195, 196, 187, and 194 fs pulse duration can be obtained at the corresponding center wavelengths.The experimental scheme presented in this paper, which is based on the nonlinear spectral broadening of the highreliability femtosecond laser pulse in single-mode fiber and the spectral selectivity technology, provides a new research approach to the realization of the highly-compacted reliable widely-tunable femtosecond laser sources and has important research significance.
Keywords:single-mode fiber  nonlinearity  widely tunable  femtosecond laser
本文献已被 CNKI 等数据库收录!
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号