The trans effect in square-planar platinum(II) complexes--a density functional study |
| |
Authors: | Chval Zdenek Sip Miroslav Burda Jaroslav V |
| |
Affiliation: | Department of Biophysics, Faculty of Health and Social Studies, University of South Bohemia, J. Boreckeho 27, 370 11 Ceske Budejovice, Czech Republic. chval@jcu.cz |
| |
Abstract: | The mechanism of substitution water exchange reactions in square planar trans-Pt[(NH(3))(2)T(H(2)O)](n+) complexes is studied (T = H(2)O, NH(3), OH(-), F(-), Cl(-), Br(-), H(2)S, CH(3)S(-), SCN(-), CN(-), PH(3), CO, CH(3)(-), H(-), C(2)H(4)). The trans effect is explained in terms of sigma-donation and pi-back-donation whose relative strengths are quantified by the changes of electron occupations of 5d platinum atomic orbitals. The sigma-donation strength is linearly correlated with the Pt-H(2)O (leaving ligand) bond length (trans influence). The kinetic trans effect strength correlates proportionally with the sigma-donation ability of the trans-ligand except the ligands with strong pi-back-donation ability that stabilizes transition state structure. The sigma-donation ability of the ligand is dependent on the sigma-donation strength of the ligand in the trans position. Therefore the trans effect caused by sigma-donation can be understood as a competition between the trans-ligands for the opportunity to donate electron density to the central Pt(II) atom. The influence of the trans effect on the reaction mechanism is also shown. For ligands with a very strong sigma-donation (e.g. CH(3)(-) and H(-)), the substitution proceeds by a dissociative interchange (I(d)) mechanism. Ligands with strong pi-back donation ability (e.g. C(2)H(4)) stabilize the pentacoordinated intermediate and the substitution proceeds by a two step associative mechanism. For ligands with weak sigma-donation and pi-back-donation abilities, the highest activation barriers have to be overcome and substitutions can be described by an associative interchange (I(a)) mechanism. The results are supported by the energy decomposition and the natural orbital analysis. |
| |
Keywords: | trans effect reaction mechanism square planar platinum(II) complexes σ-donation π-back-donation |
本文献已被 PubMed 等数据库收录! |
|