首页 | 本学科首页   官方微博 | 高级检索  
     


Approximating infinite horizon stochastic optimal control in discrete time with constraints
Authors:Lisa A. Korf
Affiliation:(1) Department of Mechanical Engineering, University of Texas, Austin, Texas
Abstract:Traditional approaches to solving stochastic optimal control problems involve dynamic programming, and solving certain optimality equations. When recast as stochastic programming problems, structural aspects such as convexity are retained, and numerical solution procedures based on decomposition and duality may be exploited. This paper explores a class of stationary, infinite-horizon stochastic optimization problems with discounted cost criterion. Constraints on both states and controls are permitted, and modeled in the objective function by allowing it to take infinite values. Approximating techniques are developed using variational analysis, and intuitive lower bounds are obtained via averaging the future. These bounds could be used in a finite-time horizon stochastic programming setting to find solutions numerically. Research supported in part by a grant of the National Science Foundation. AMS Classification 46N10, 49N15, 65K10, 90C15, 90C46
Keywords:Epi-convergence  Variational analysis  Infinite horizon  Optimal control  Dynamic programming  Stochastic programming
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号