首页 | 本学科首页   官方微博 | 高级检索  
     


Efimov effect in an analytically solvable model
Authors:Antonio C. Fonseca  Edward F. Redish  P.E. Shanley
Affiliation:Department of Physics and Astronomy, University of Maryland, College Park, Maryland 20742, USA;Laboratory for Astronomy and Solar Physics, NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, USA;Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556, USA
Abstract:The Efimov effect is demonstrated in a model consisting of two heavy particles and a light one when the light-heavy interaction leads to a zero-energy two-body bound state. The model is solved in the Born-Oppenheimer approximation with the light-heavy interaction taken to be a separable S-wave potential of Yamaguchi form. It is demonstrated that in the case of a- two-body zero-energy bound state the binding energy of the light particle in the two-center potential exactly yields an effective 1r2 potential for the relative motion of the heavies. If the light-heavy mass ratio is made small enough, infinitely many bound states (the Efimov effect) are obtained. The approach to this limit is studied and the nature of the potential for large scattering length is obtained. An upper bound for the number of bound states is calculated using a result of Bargmann and Calogero and Efimov's ln(ar0) result is found. We note that the long-range effect arises from the large extent of the bound state, the pair wave function being essentially exp(?ra) when the scattering length a is large.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号