首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Electrochemistry of copper in aqueous acetonitrile
Authors:I D Macleod  A J Parker  P Singh
Institution:(1) Mineral Chemistry Research Unit, Murdoch University, 6150 Murdoch, Western Australia;(2) Present address: Department of Material Conservation and Restoration, Western Australian Maritime Museum, Cliff Street, Fremantle, Western Australia
Abstract:The electrochemical characteristics of the Cu (II)/Cu (I) and the Cu (I)/Cu (0) couples at platinum, carbon, mercury and copper have been studied in acetonitrile-water (AN-H2O) mixtures. All the electrode processes are moderately fast with mercury the fastest but slower on platinum and carbon paste in that order. A slow chemical step precedes oxidation of Cu (I) to Cu (II) on allectrodes in solutions of high AN content. The slow step may be partial removal of AN from the solvated Cu (I) ion prior to electron transfer. Electrode processes are faster in chloride ions than in sulfate ion solutions. Reduction of Cu (I) in AN–H2O is quite slow on glassy carbon. Adsorption of AN on platinum and carbon influences the processes. Diffusion coefficients in sulfate solutions are in the order, Cu (I) (AN–H2O)>Cu (II)(AN–H2O)>Fe (III)(H2O) and 2-hydroxy-cyanoethane (2-HCE) strongly decreases the mobility of Cu (I) when added to H2O. The relevance of the measurements to hydrometallurgical processes is considered. CuSO4 in 30% v/v AN–H2O is a lsquofasterrsquo oxidant than the common oxidant Fe2(SO4)3 in H2O because of the greater mobility and faster electron acceptance from a corroding surface of Cu (II). Only in solutions of very high nitrile content is the reduction potential of CuSO4 as high as that of Fe2(SO4)3 in H2O.
Keywords:Cu(II)/Cu(I) couple  Cu(I)/Cu(0) couple  acetonitrile-water mixtures  Fe(III)  2-hydroxycyanoethane  electrochemistry  voltammetry
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号