首页 | 本学科首页   官方微博 | 高级检索  
     检索      


New insights into the mechanism of proton transfer to hydride complexes: kinetic and theoretical evidence showing the existence of competitive pathways for protonation of the cluster [W3S4H3(dmpe)3]+ with acids
Authors:Algarra Andrés G  Basallote Manuel G  Feliz Marta  Fernández-Trujillo M Jesús  Llusar Rosa  Safont Vicent S
Institution:Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Facultad de Ciencias, Universidad de Cádiz, Apartado 40, Puerto Real, 11510 Cádiz, Spain.
Abstract:The reaction of the hydride cluster W3S4H3(dmpe)3]+ (1, dmpe = 1,2-bis(dimethylphosphanyl)ethane) with acids (HCl, CF3COOH, HBF4) in CH2Cl2 solution under pseudo-first-order conditions of excess acid occurs with three kinetically distinguishable steps that can be interpreted as corresponding to successive formal substitution processes of the coordinated hydrides by the anion of the acid (HCl, CF3COOH) or the solvent (HBF4). Whereas the rate law for the third step changes with the nature of the acid, the first two kinetic steps always show a second-order dependence on acid concentration. In contrast, a single kinetic step with a first-order dependence with respect to the acid is observed when the experiments are carried out with a deficit of acid. The decrease in the T1 values for the hydride NMR signal of 1 in the presence of added HCl suggests the formation of an adduct with a W-H...H-Cl dihydrogen bond. Theoretical calculations for the reaction with HCl indicate that the kinetic results in CH2Cl2 solution can be interpreted on the basis of a mechanism with two competitive pathways. One of the pathways consists of direct proton transfer within the W-H...H-Cl adduct to form W-Cl and H2, whereas the other requires the presence of a second HCl molecule to form a W-H...H-Cl...H-Cl adduct that transforms into W-Cl, H2 and HCl in the rate-determining step. The activation barriers and the structures of the transition states for both pathways were also calculated, and the results indicate that both pathways can be competitive and that the transition states can be described in both cases as a dihydrogen complex hydrogen-bonded to Cl- or HCl2(-).
Keywords:cluster compounds  hydride ligands  kinetics  protonation  reaction mechanisms
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号