首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Assessment of various kinetic models for the pyrolysis of a microgranular cellulose
Authors:Richard Capart  Lotfi Khezami
Institution:a Laboratoire de Génie des Procédés Industriels, UMR 6067 du CNRS, Université de Technologie de Compiègne, P.O. Box 20529, 60205 Compiègne, France
b Lawrence Livermore National Laboratory, University of California, P.O. Box 808, Livermore, CA 94551, USA
Abstract:The kinetics of pyrolysis of a micro-crystalline cellulose in nitrogen were studied from TGA and DTG data, obtained with two different modes of heating: a dynamic mode at constant heating rates between 1 and 11 °C/min and an isothermal mode at various temperatures, kept constant between 280 and 320 °C. In isothermal mode, it appeared very clearly that the mass depletion shows a sigmoid profile characteristic of an auto-accelerated reaction process. This behaviour is consistent with kinetics of nuclei-growth, well represented by the models of Avrami-Erofeev (A-E) and of Prout-Tompkins (P-T) type. All the other kinetic models commonly applied to the thermal decomposition of solids revealed unsatisfactory. The TGA and DTG data were, thus, found ideally simulated from a reaction scheme consisting in two parallel reactions, termed 1 and 2, each one described by the kinetic law: dx/dt=−AE/RTxn(1−0.99x)m. Reaction 1 is related to the bulk decomposition of cellulose and is characterised by the set of parameters: E1=202 kJ/mol; n1=1; m1=0.48. Reaction 2 is related to the slower residual decomposition, which takes place over approximately 350 °C and affects only 16% by weight of the raw cellulose. With m2 constrained to 1, the optimised parameters of this reaction were: E2=255 kJ/mol; n2=22. Finally, the proposed model allowed to correctly fit not less than to 10 sets of ATG-DTG data, isothermal and dynamic.
Keywords:Cellulose  Thermal decomposition  Kinetics
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号