首页 | 本学科首页   官方微博 | 高级检索  
     


Impact of channel baud-rate on logarithmic digital backward propagation in DP-QPSK system with uncompensated transmission links
Authors:Rameez Asif  Chien-Yu Lin  Bernhard Schmauss
Affiliation:
  • Chair of High Frequency Technology (LHFT) and Erlangen Graduate School in Advanced Optical Technologies (SAOT), University of Erlangen-Nuremberg (FAU), Cauerstr.9, Erlangen (91058), Germany
  • Abstract:We numerically investigate the impact of channel baud-rate on the performance of logarithmic step-size based spilt-step Fourier method (SSFM). This algorithm is used to implement digital backward propagation (DBP) to efficiently compensate fiber chromatic dispersion (CD) and non-linearities (NL). The DBP method is implemented in N-channel dual-polarization quadrature phase shift keying (DP-QPSK) transmission over 2000 km standard single mode fiber (SMF) with no in-line optical dispersion compensation. We investigate the same-capacity and same-bandwidth transmission systems with 56 Gbit/s/ch (14 GBaud), 112 Gbit/s/ch (28 GBaud) and 224 Gbit/s/ch (56 GBaud). Each system has the bandwidth occupancy of 500 GHz with a total transmission capacity of 1.12 Tbit/s. Moreover, we have also compared the multiple channel transmission performance with single channel transmission to quantify the impact of inter-channel (cross-phase modulation ‘XPM’ and four-wave mixing ‘FWM’) and intra-channel (self-phase modulation ‘SPM’) non-linearities. The logarithmic step-size based DBP algorithm (L-DBP) depicts efficient mitigation of CD and NL impairments. The benefit of the logarithmic step-size is the reduced complexity and computational time for higher baud-rate transmission systems.
    Keywords:Dispersion   Non-linearities   Optical fiber communication   Phase modulation   Coherent receiver
    本文献已被 ScienceDirect 等数据库收录!
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号