首页 | 本学科首页   官方微博 | 高级检索  
     


The topology of the Ehrenfest force density revisited. A different perspective based on Slater‐type orbitals
Authors:Jan Dillen
Affiliation:Department of Chemistry and Polymer Science, Private Bag X1, Matieland, South Africa
Abstract:The topology of the Ehrenfest force density was studied with Slater‐type orbitals (STO). At larger distances from the nuclei, STOs generate similar artefacts as noticed before with Gaussian‐type orbitals. The topology of the Ehrenfest force density was found to be mainly homeomorphic with the topology of the electron density. For the first time, reliable integrations of several properties over force density atomic basins were performed successfully. Integration of the electron density of a number of hydrides, fluorides, and chlorides of first row elements over force density basins indicate substantial differences between the partial charges of the atoms as compared with those obtained from electron density basins. Calculations on saturated hydrocarbons confirm that the electronegativity of carbon atoms increases with increasing geometrical strain. Atomic interaction lines are observed to exist in the Ehrenfest force density between the hydrogen atoms of several so‐called “congested” molecules, and also in some inclusion complexes of alkanes with helium. However, interaction lines are lacking in several other controversial cases. © 2015 Wiley Periodicals, Inc.
Keywords:atoms in molecules  density functional theory  stress tensor  quantum chemical topology
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号