首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Free energetics of carbon nanotube association in aqueous inorganic NaI salt solutions: Temperature effects using all‐atom molecular dynamics simulations
Authors:Shu‐Ching Ou  Di Cui  Matthew Wezowicz  Michela Taufer  Sandeep Patel
Institution:1. Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware;2. Department of Computer and Information Sciences, University of Delaware, Newark, Delaware
Abstract:In this study, we examine the temperature dependence of free energetics of nanotube association using graphical processing unit‐enabled all‐atom molecular dynamics simulations (FEN ZI) with two (10,10) single‐walled carbon nanotubes in 3 m NaI aqueous salt solution. Results suggest that the free energy, enthalpy and entropy changes for the association process are all reduced at the high temperature, in agreement with previous investigations using other hydrophobes. Via the decomposition of free energy into individual components, we found that solvent contribution (including water, anion, and cation contributions) is correlated with the spatial distribution of the corresponding species and is influenced distinctly by the temperature. We studied the spatial distribution and the structure of the solvent in different regions: intertube, intratube and the bulk solvent. By calculating the fluctuation of coarse‐grained tube‐solvent surfaces, we found that tube–water interfacial fluctuation exhibits the strongest temperature dependence. By taking ions to be a solvent‐like medium in the absence of water, tube–anion interfacial fluctuation shows similar but weaker dependence on temperature, while tube–cation interfacial fluctuation shows no dependence in general. These characteristics are discussed via the malleability of their corresponding solvation shells relative to the nanotube surface. Hydrogen bonding profiles and tetrahedrality of water arrangement are also computed to compare the structure of solvent in the solvent bulk and intertube region. The hydrophobic confinement induces a relatively lower concentration environment in the intertube region, therefore causing different intertube solvent structures which depend on the tube separation. This study is relevant in the continuing discourse on hydrophobic interactions (as they impact generally a broad class of phenomena in biology, biochemistry, and materials science and soft condensed matter research), and interpretations of hydrophobicity in terms of alternative but parallel signatures such as interfacial fluctuations, dewetting transitions, and enhanced fluctuation probabilities at interfaces. © 2015 Wiley Periodicals, Inc.
Keywords:hydrophobic association  single‐walled carbon nanotube  temperature dependence  ion adsorption  graphics processing unit
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号