首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A novel high-voltage light punch-through carrier stored trench bipolar transistor with buried p-layer
Authors:Zhang Jin-Ping  Li Ze-Hong  Zhang Bo  Li Zhao-Ji
Institution:State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
Abstract:A novel high-voltage light punch-through (LPT) carrier stored trench bipolar transistor (CSTBT) with buried p-layer (BP) is proposed in this paper. Since the negative charges in the BP layer modulate the bulk electric field distribution, the electric field peaks both at the junction of the p base/n-type carrier stored (N-CS) layer and the corners of the trench gates are reduced, and new electric field peaks appear at the junction of the BP layer/N- drift region. As a result, the overall electric field in the N- drift region is enhanced and the proposed structure improves the breakdown voltage (BV) significantly compared with the LPT CSTBT. Furthermore, the proposed structure breaks the limitation of the doping concentration of the N-CS layer (NN -CS) to the BV, and hence a higher NN-CS can be used for the proposed LPT BP-CSTBT structure and a lower on-state voltage drop (Vce(sat)) can be obtained with almost constant BV. The results show that with a BP layer doping concentration of NBP=7 × 1015 cm-3, a thickness of LBP=2.5 μm, and a width of WBP=5 μm, the BV of the proposed LPT BP-CSTBT increases from 1859 V to 1862 V, with NN-CS increasing from 5 × 1015 cm-3 to 2.5 × 1016 cm-3. However, with the same N--drift region thickness of 150 μm and NN-CS, the BV of the CSTBT decreases from 1598 V to 247 V. Meanwhile, the Vce(sat) of the proposed LPT BP-CSTBT structure decreases from 1.78 V to 1.45 V with NN-CS increasing from 5 × 1015 cm-3 to 2.5 × 1016 cm-3.
Keywords:carrier stored trench bipolar transistor  light punch-through  buried p-layer  breakdown voltage
本文献已被 CNKI 维普 等数据库收录!
点击此处可从《中国物理 B》浏览原始摘要信息
点击此处可从《中国物理 B》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号